Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: Comparison between two model systems

نویسندگان

  • L J Backman
  • G Andersson
  • G Fong
  • H Alfredson
  • A Scott
  • P Danielson
چکیده

The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α2A AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α2A AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α2A AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model.

BACKGROUND Tenocytes produce substance P (SP), and its receptor (neurokinin-1 receptor (NK-1R)) is expressed throughout the tendon tissue, especially in patients with tendinopathy and tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering the known effects of SP, one might ask whether SP contributes to these changes. OBJECTIVES To test whether developme...

متن کامل

The Effects of Mechanical Loading on Tendons - An In Vivo and In Vitro Model Study

Mechanical loading constantly acts on tendons, and a better understanding of its effects on the tendons is essential to gain more insights into tendon patho-physiology. This study aims to investigate tendon mechanobiological responses through the use of mouse treadmill running as an in vivo model and mechanical stretching of tendon cells as an in vitro model. In the in vivo study, mice underwen...

متن کامل

مقایسه تاثیر بیهوشی عمومی و بیحسی اسپاینال بر تغییرات قند خون حین جراحی

                            Aim and Background:   Stress of surgery transfers some neurological and hormonal signals which triggers some physiological responses like adrenergic stimulation, increase in noradrenalin, cortisol, growth factor, decrease in insulin and increase in insulin resistance resulting in hyperglycemia during surgery. In this stu...

متن کامل

Second harmonic generation analysis of early Achilles tendinosis in response to in vivo mechanical loading

BACKGROUND Tenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes. However, the relation between abnormal tenocyte morphology and early changes in the fibrillar collagen matrix has not been closely examined in vivo. Second harmonic generation (SHG) microscopy is a recently developed technique which allows examinati...

متن کامل

Low-Level Laser Irradiation Stimulates Tenocyte Migration with Up-Regulation of Dynamin II Expression

Low-level laser therapy (LLLT) is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013